Работа варистора. Принцип эксплуатации и маркировка. Варистор варистору рознь: надежная защита от скачков напряжения На что влияет диаметр варистора

Варистор - что это такое, где он применяется, и зачем необходим? Данный элемент электронных схем довольно редко используется, поэтому название его не на слуху. Давайте исправим это и ознакомимся с его работой и принципом устройства.

Общая информация

Электроустановки обладают изоляцией, которая соответствует Реальный показатель может отличаться от теоретического значения. Но работа будет обеспечиваться в случае, если отклонение невелико и находится в рамках разрешенного диапазона. И всё же электрооборудование часто выходит из строя из-за импульса напряжения. Так называют резкое изменение характеристики в определённой точке, когда следует восстановление до первоначального уровня за небольшой промежуток времени. Импульсы могут быть грозовые и коммутационные. Чтобы защититься от таких перепадов, используют различные устройства, среди которых фильтры, цепочки и много других разработок. Но наиболее успешным оказался варистор. Что это такое? Так называют эффективное и дешевое средство защиты от импульсов, которое базируется на нелинейных полупроводниковых резисторах. Принцип их действия прост: варистор включается параллельно к защищаемому оборудованию и в нормальном режиме на него влияет рабочее напряжение защищаемого устройства. Когда наступает экстренная ситуация, то он начинает функционировать как изолятор. Их отличительной чертой является симметричная и хорошо выраженная нелинейная вольт-амперная характеристика.

Действия варистора

Когда возникает импульс, то устройство в силу нелинейности характеристики быстро уменьшает свое сопротивление (до долей Ома) и шунтирует нагрузку. Таким образом она защищается, а поглощенная энергия рассеивается в виде тепла. Во время таких процессов в варисторах может протекать ток величиной в несколько тысяч ампер. Учитывая практически безынерционность устройства, после того как импульс погашен, он опять становится прибором с большим сопротивлением. Таким образом, в нормальных условиях он не влияет на работу электрооборудования. Но есть будут импульсы то будьте уверены - они срежутся. Это обеспечивает сохранность даже слабой изоляции.

Самые популярные образцы

Говоря про варистор, что это такое, нельзя обойти стороной материалы, из которых он изготавливается. Наибольшее распространение получили те устройства, которые сделаны с использованием Это обусловлено несколькими причинами:

  1. Простота изготовления.
  2. Цинк имеет хорошую способность к поглощению высокоэнергетических импульсов напряжения.

Создаются они по «керамической» технологии, которая включает в себя прессование, обжиг, нанесение электродов и электроизоляции, пайку выводов и монтаж влагозащитных покрытий. Благодаря простоте изготовления они могут создаваться даже под индивидуальные заказы.

Маркировка

Мы уже достаточно внимания уделили изучению того, чем является варистор. Маркировка этого прибора сложна, и поэтому при приобретении устройства о нём нельзя судить по данным, размещенным на корпусе. Рассмотрим на вот таком примере: есть CNR-06D400K. CNR - это название типа, в данном случае перед нами металлооксидный варистор. 06 - он имеет диаметр в 6 миллиметров. D - перед нами дисковый варистор. 400 - напряжение срабатывания. K - эта буква говорит о том, что допуск возможного отклонения имеет погрешность в 10%. Если говорить о компьютерной технике, то у них варисторы рассчитаны на 470В. Согласитесь, немало. Но ведь существует не один варистор! Маркировка этих деталей проводится каждым крупным производителем по-своему, поэтому универсальных и стандартизированных правил распознавания нет. Поэтому нужно пользоваться или помощью продавцов, или прибегать к услугам справочников.

Изображение

Если мы не хотим, чтобы техника сгорела, то нам важен варистор. Обозначение на схеме выглядит как у обычного резистора, только есть ещё косая линия и буква U. Она говорит о том, что рабочие характеристики напрямую зависят от величины напряжения. Но может и по-другому выглядеть варистор. Обозначение на схеме для него задаётся как RU, после чего указываются цифры. Число является порядковым номером, а вот буквы обозначают название устройства: резистор-варистор. Также могут быть информационные обозначения. Это можно отнести к популярной отечественной продукции, которая изготавливается на заводе «Прогресс» в Ухте. Их варистор на схеме может быть промаркирован буквами от А до Г.

Проверка работоспособности элемента

Вот у нас в руках есть варистор. Как проверить его работоспособность? Начинать всегда необходимо с внешнего осмотра устройства. Необходимо внимательно поискать на корпусе сколы, трещины, почернения или следы нагара. Если есть внешние дефекты, то уже одно это говорит о том, что элемент необходимо заменить или не использовать вообще. Если при осмотре не было выявлено проблем, то можно приступать к проверке мультиметром. В этом случае тестер необходимо переключить на режим замера максимального сопротивления. Вот самый простой способ узнать, рабочий ли варистор. Как проверить его работоспособность, мы уже рассмотрели, теперь давайте обсудим, как же подбирать необходимые элементы.

Оптимальный рабочий режим

В силу высокой линейности устройства найти наилучшие параметры для схемы - задача не из легких. Для этого применяются довольно сложные и многочисленные расчеты. Большую важность в этом случае играет рабочий ток, значение которого должно быть минимальным и не вести к перегреву устройства. Но здесь приходится балансировать. Ведь если использовать слишком малой рабочий ток, то увеличится ограничение напряжения, и устройство не будет выполнять свою основную функцию. В качестве "ленивого" варианта можно взять на вооружение такой принцип: рабочее постоянное напряжение не должно превышать 0,85 от порога варистора. Но этот простой подход на практике является малоприменимым. Ведь работа варистора специфическая, и желаемый результат, а также рамки ограничения должны подбираться под каждый конкретный случай.

Выбор и установка

Про то, что варисторы должны размещаться параллельно защищаемому электрооборудованию, мы уже говорили. Наиболее предпочтительным местом монтажа варисторов считается место после (если смотреть со стороны нагрузки, которую необходимо защитить). В качестве примера уже готового решения можно привести продукцию ранее упомянутого завода «Прогресс» с названием «Импульс-1». Такой варистор предназначен для того, чтобы его закрепляли на электрощите. Благодаря ему можно просто реализовать схему защиты трехфазных нагрузок с соединением «звезда» или «треугольник». Или в качестве альтернативы выбрать защиту 3 электроустановок, которые питаются от трехфазной сети.

Параметры

Говоря про варистор, что это такое, нельзя обойти вниманием его характеристики, которые важны в работе:

  1. Классификационное напряжение. Так называют величину, при которой ток в 1 мА протекает через устройство.
  2. Максимальное допустимое переменное напряжение. Под этим понимается величина, при которой варистор срабатывает и начинает выполнять возложенные на него защитные функции.
  3. Максимальное допустимое постоянное напряжение. То же, что и с предыдущим вариантом. Но в данном случае этот параметр касается работы с постоянным током.
  4. Максимальное Это величина, при которой варистор может работать без повреждений. Как правило, указывается отдельно для разных значений тока. Если превысить эту величину, то варистор треснет надвое или даже разлетится на куски.
  5. Максимальная поглощаемая энергия. Указывается в джоулях. Является величиной максимальной энергии импульса, которая может быть рассеяна варистором в виде тепла без угрозы разрушить само устройство.
  6. Время срабатывания. Это промежуток, за который устройство переходит из одного состояния в другое, если было превышено максимальное допустимое напряжение. Как правило, измеряется в десятках наносекунд.
  7. Допустимое отклонение. Это величина, изменение на которую квалификационного напряжения варистора считается нормой. Всегда указывается в процентах. Как можно было понять из статьи ранее, данный параметр обозначается буквой в конце маркировки.

Использование

Давайте рассмотрим, к примеру, сеть на 220 Вольт. Для неё оптимальными будут устройства, у которых напряжение срабатывания находится в диапазоне 275-420В (но здесь есть некоторые технические нюансы, которые мы трогать не будем). В качестве используется три варистора. Они блокируют проникновение импульсов по цепи фазы и нуля. А почему их три? Бывает иногда такое, что в новостях проскакивают сообщения о проблемах, вследствие которых электроники лишились тысячи людей. Такое бывает, когда вместо нуля и фазы по проводам идёт только последняя. Для аппаратуры это почти всегда верная смерть. Но наличие варистора на нуле позволяет успешно защищать от таких ситуаций. В качестве показательного примера можно привести мобильные телефоны. Чтобы они не перегорели, используют миниатюрные многослойные варисторы. Кроме этого, их можно встретить в телекоммуникационном оборудовании и автомобильной электронике.

Что такое варистор и для чего он применяется, рассмотрен принцип действия варистров, их вольт-амперная характеристика, приведены основные параметры варисторов отечественного производства, а также параметры для дисковых варисторов серии TVR. Как выглядит из себя варистор который применяется в бытовой радиоаппаратуре, а также внешний вид мощных варистров.

Принцип работы варистора

Варисторы , Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины.

В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рисунок 1), то есть он может работать и на переменном напряжении.

Рис. 1. Вольт-амперная характеристика варистора.

Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

Достоинством варисторов, по сравнению с газоразрядниками, являются:

  • большее быстродействие;
  • безынерционное отслеживание перепадов напряжений;
  • выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;
  • имеют более низкую стоимость.

Варисторы широко применяются в промышленном оборудовании и приборах бытового назначения:

  • для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;
  • для электростатической защиты входов радиоаппаратуры;
  • для защиты от электромагнитных всплесков в мощных индуктивных элементах;
  • как элемент искрогашения в электромоторах и переключателях.

Виды варисторов

Типовое значение времени срабатывания варисторов при воздействии перенапряжения составляет не более 25 наносекунд (нс), но для защиты некоторых видов оборудования его может оказаться недостаточно (для электростатической защиты необходимо не более 1 нс).

Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия.

Так, например, фирме “S+M Epcos”, благодаря применению при изготовлении варисторов многослойной структуры SIOV-CN и их SMD-исполнения (безвыводная конструкция для поверхностного монтажа), удается добиться времени срабатывания менее 0,5 нс (при расположении таких элементов на печатной плате для получения указанного быстродействия уже необходимо минимизировать индуктивности внешних соединительных проводников).

В дисковой конструкции варисторов за счет индуктивности выводов время срабатывания увеличивается до нескольких наносекунд.

Малое время срабатывания, высокая надежность, отличные пиковые электрические характеристики в широком диапазоне рабочей температуры при малых размерах ставят многослойные варисторы на первое место при выборе элементов защиты от статических зарядов.

Рис. 2. Внешний вид варисторов.

Рис. 3. Внешний вид мощных варисторов.

Например, в области производства сотовых телефонов многослойные варисторы можно считать уже стандартом в защите от статического электричества.

CN-варисторы могут надежно защищать от статических разрядов: клавиатуры, разъемы для подключения факса и модема, соединители зарядных устройств, входы интегральных аналоговых микросхем, выводы микропроцессоров.

Характеристики варисторов

Основными параметрами , которые используют при описании характеристик варисторов , являются:

  • Un — классификационное напряжение, обычно измеряемое при токе 1 мА, — это условный параметр, который указывается при маркировке элементов;
  • Um - максимально допустимое действующее переменное напряжение (среднеквадратичное);
  • Um= — максимально допустимое постоянное напряжение;
  • Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;
  • W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.
  • Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;
  • Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда вари-стор пропускает через себя большой ток, она падает до нуля.

От величины W зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор, т. е.:

Для применения рабочее напряжение у варисторов выбирается исходя из допустимой энергии рассеяния и максимально допустимой амплитуды напряжения. Напряжение ограничения примерно равно квалификационному напряжению (Un) варистора.

Для сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380...430 В. Для варистора с классификационным напряжением 430 В при импульсе тока 100 А напряжение будет ограничено на уровне около 600 В.

В России крупнейшим производителем варисторов (СН2-1, BP-1, СН2-2) является завод «Прогресс» (г. Ухта). Параметры некоторых из таких варисторов приведены в табл. 1.

Таблица 1. Основные параметры варисторов отечественного производства.

Тип варистора

Примечание. Емкость для отечественных варисторов не указывается.

Из всего разнообразия выпускаемых за рубежом варисторов параметры одного из типов, имеющих дисковую конструкцию, приведены в таблице 2 (другие типы имеют близкие параметры).

Они выпускаются на рабочие напряжения от 4 до 1500 В с небольшим шагом, но в продаже вы вряд ли найдете все номиналы из ряда (в случае необходимости можно заказать их изготовление на любое напряжение для поставки больших партий), но обычно можно использовать ближайшие номиналы из ряда в сторону увеличения напряжения.

Таблица 2. Основные параметры дисковых варисторов серии TVR.

варистора

Для повышения рассеиваемой мощности варисторы можно включать последовательно (или параллельно, если подбирать их по идентичным параметрам). Размеры варисторов зависят от мощности, но так как такие элементы работают при импульсной перегрузке, чаще указывают рассеиваемую энергию в джоулях:

которая связана с мощностью соотношением:

Для выбора варистора с необходимой энергией рассеивания для защиты нагрузок, потребляющих мощность более 1...2 кВт, в практических расчетах можно руководствоваться приведенной формулой:

  • W — максимальная мгновенная энергия в джоулях;
  • Р — номинальная мощность нагрузки, приходящаяся на одну фазу, Вт;
  • а — коэффициент нелинейности варистора;
  • f — частота переменного напряжения, Гц;
  • n — КПД защищаемой нагрузки.

Максимально допустимое значение рассеиваемой энергии у примененного варистора должно превышать эту величину.

Так как перегрев варистора приводит к его повреждению, выпускаются такие элементы и с уникальными свойствами, например, имеющие температурную защиту — размыкающий механический контакт в защищаемой цепи, что значительно повышает надежность работы узла.

Сравнение основных характеристик варисторов разных типов можно найти в Интернет. Суть его заключается в том, что отечественные производители выпускают компоненты по техническим параметрам не хуже, чем это делают за рубежом (правда, приобрести их радиолюбителю намного сложней — в продаже чаще можно встретить импортные).

В качестве основного недостатка варистора можно отметить его большую собственную емкость, которая вносится в цепь. В зависимости от конструкции, типа и номинального напряжения эта емкость может составлять от 80 до 30000 пФ.

Впрочем, для некоторых применений большая емкость может быть и достоинством, например в фильтре, совмещающем в себе функцию ограничения напряжения (для таких применений можно заказать изготовление варисторов с повышенной емкостью).

Вторым недостатком является меньшая максимальная допустимая рассеиваемая мощность по сравнению с разрядниками (для увеличения мощности рассеивания изготовители увеличивают размеры корпуса варистора).

Литература: Радиолюбителям полезные схемы, Книга 5. Шелестов И.П.

Все, кто сталкивался с радиоэлектронной аппаратурой, наверняка обратили внимание, что название большинства электронных компонентов заканчивается на «стор». Резистор, транзистор , тиристор, стабистор.

Рассмотрим ещё один компонент электронных схем. Он называется варистор и представляет собой резистор , сопротивление которого меняется в зависимости от величины подаваемого напряжения.

Varistor (Variable Resistor) так и переводится – изменяющееся сопротивление. А вот так варистор обозначается на принципиальных схемах.

Английская буква U рядом с наклонной чертой указывает на то, что сопротивление электронного компонента зависит от напряжения. На схемах варистор обычно маркируется двумя буквами RU , а после них ставиться порядковый номер варистора в схеме (1, 2, 3...).

Варистор является полупроводниковым прибором, изготовленным из порошка карбида кремния (SiC) или окиси цинка (ZnO) методом прессования. У варистора симметричная и нелинейная вольт-амперная характеристика, поэтому он может применяться в цепях постоянного и переменного тока. Варисторы обладают крайне полезным для электрических цепей качеством. Они способны резко менять своё сопротивление при превышении напряжением определённого порога срабатывания.

В случае возникновения импульса напряжения способного вывести из строя электронное устройство, варистор практически мгновенно изменяет своё сопротивление от сотен МОм до десятков Ом, то есть закорачивает цепь питания, поэтому перед варистором всегда ставится обычный плавкий предохранитель.

Раньше для таких защитных целей ставились газонаполненные разрядники, но их быстродействие и надёжность не идут ни в какое сравнение с параметрами варисторов. Например, дисковый варистор без выводов и впаиваемый непосредственно в печатную плату имеет время срабатывания не превышающее нескольких наносекунд.

Варистор подключается параллельно цепи питания. При отсутствии опасных импульсов напряжения ток, протекающий через него, имеет небольшую величину и варистор не влияет на работу схемы, так как по сути является диэлектриком.

Если возник импульс перенапряжения, варистор из-за нелинейности характеристики уменьшает своё сопротивление практически до нуля. Нагрузка шунтируется, а поглощённая энергия рассеивается в виде тепла. Варистор не обладает инерцией, поэтому после «срезания» импульса он мгновенно снова приобретает очень большое сопротивление.

Если импульс перенапряжения был слишком большой и мощный, то варистор выходит из строя. Порой его корпус трескается, а то и вообще раскалывается на несколько частей.

Бывает, что варистор очень выручает при неполадках в электросети, так как принимает высоковольтный импульс на себя и способствует скорейшему разрыву цепи. При этом основная часть схемы остаётся невредимой. На фото блок питания от проектора, который вышел из строя после скачка напряжения в электросети 220V.

После замены плавкого предохранителя работа проектора была полностью восстановлена. Никакого сложного ремонта, кроме замены предохранителя и самого варистора не потребовалось. Вот так одна небольшая деталь может спасти дорогостоящий прибор.

Параметры варисторов.

Основные параметры варисторов:

    Классификационное напряжение варистора (Varistor Voltage). Это величина напряжения, при котором через варистор протекает ток величиной 1 mA. Этот параметр не является рабочим и скорее является условным. При подборе варистора следует обращать внимание на параметры, о которых речь пойдёт далее;

    Максимально допустимое переменное напряжение (Maximum Allowable Voltage – ACrms). Для варисторов указывается среднеквадратичное значение переменного напряжения (rms). Это величина переменного напряжения, при котором варистор "срабатывает" и начинает пропускать через себя ток, выполняя свои защитные функции;

    Максимально допустимое постоянное напряжение (Maximum Allowable Voltage – DC). Тоже, что и максимально допустимое переменное напряжение но для постоянного тока. Как правило, величина этого параметра больше, чем для переменного тока. Указывается также в вольтах (V);

    Максимальное напряжение ограничения (Maximum Clamping Voltage). Это максимальное напряжение, которое способен выдержать варистор без повреждения. Как правило оговаривается для конкретной величины протекающего через варистор тока. При превышении напряжения ограничения варистор выходит из строя. Корпус варистора при этом растрескивается надвое или вовсе разлетается на куски.

    Максимальная поглощаемая энергия в джоулях (Дж). Это величина максимальной энергии импульса, которую может рассеять варистор в виде тепла без угрозы разрушения самого варистора;

    Время срабатывания - время, за которое варистор переходит из высокоомного состояния в низкоомное при превышении максимально допустимого напряжения. Для широко распространённых варисторов это значение составляет несколько десятков наносекунд (нс). Например, 25 нс.

    Допустимое отклонение (Varistor Voltage Tolerance) – допустимое отклонение квалификационного напряжения варистора. Указывается в процентах – %. Может быть ±5%, ±10%, ±20% и т.д. В маркировке импортных варисторов значение допуска зашифровывается в маркировку варистора буквой. Например, для варисторов фирмы Joyin принято такое обозначение: K – ±10%, L – ±15%, M – ±20%, P – ±25%. Таким образом, для варистора типа JVR-07N391K – отклонение составляет не более ±10%.

При подборе варисторов для электронных схем лучше обращаться к справочному листку (даташиту) на конкретный варистор. Это будет более разумным решением, так как на корпус импортных варисторов наноситься только величина квалификационного напряжения, по которому достаточно сложно судить о параметрах защитного элемента.

Применение варисторов.

Для обычной сети 220 вольт устанавливают защитные варисторы с напряжением срабатывания 275 – 420 вольт. Вот пример надёжно защищённого сетевого фильтра.

Этот сетевой фильтр защищают три варистора. То есть надёжно блокируется проникновение импульса не только по фазовой цепи, но и по цепи нуля. Варистор RU1 стоит между фазой и нулевым проводником. Он осуществляет основную защиту. Два других RU2 и RU3 подключаются между фазой и землёй и между нулём и землёй. Очень часто бывает ситуация когда на целой улице у всех пользователей вышла из строя вся электронная бытовая аппаратура. О таких случаях были даже телепередачи, когда тысячи человек не могли разобраться на кого писать заявление в суд.

А всё дело в том, что на линии электроснабжения, питающей допустим улицу или микрорайон, вместо фазы и нуля по обоим проводам пошла фаза. Это почти верная смерть для незащищённой бытовой аппаратуры. То есть между проводами N и PE, если всё нормально, напряжения быть не должно. В случае появления фазы на проводе N варистор RU2 благополучно зашунтирует защищаемый блок. Это один из примеров использования варисторов в цепях питания бытовой электронной аппаратуры.

Миниатюрные многослойные варисторы уже давно используются в схемах мобильных телефонов и защищают их от статического электричества. Так же варисторы используются для надёжной защиты компьютерных разъёмов и выводов микропроцессоров от той же статики. Варисторы активно применяются в автомобильной электронике и телекоммуникационном оборудовании.

Варисторы можно встретить во входных цепях блоков питания . Вот фото варистора 391KD14 на плате резервируемого блока питания.

А здесь варистор FNR-14K391 установлен в схему охранного прибора "Гранит" для защиты его блока питания от всплесков напряжения в электросети 220V.

Обнаружить варистор можно и на платах электронного балласта для люминесцентных ламп. На фото показан варистор MYG-10K471, установленный в схему электронного пуско-регулирующего аппарата (ЭПРА) для четырёх линейных люминесцентных ламп. На плате он обозначен как RU.

Варисторы для защиты бытовой электроники обычно выпускаются в виде диска с двумя выводами. Чем больше диаметр диска, тем более мощный импульс напряжения способен погасить варистор. Мощность импульса или энергию, которую способен "погасить" варистор обычно измеряют в джоулях (Дж).

Вот, например, несколько варисторов. Значение диаметра варистора в миллиметрах, как правило, вводится в маркировку самого варистора, например, JVR-07 N391K (диаметр – 7 мм.).

Диаметр самого большого варистора типа MYG-14K391, изображённого на фотографии – 14 мм. (~70 Дж), чуть поменьше варистор MYG-10K471 – 10 мм. (~45 Дж), а маленького JVR-07N391K – 7 мм. (~30 Дж).

В скобках указана величина энергии поглощения в джоулях (Дж). Как видим, варистор, обладающий самым большим диаметром в 14 мм. способен погасить энергию опасного импульса в 70 джоулей, в то время как самый маленький варистор диаметром 7 мм. способен погасить всего лишь 30 джоулей. Таким образом, по величине диаметра варистора можно косвенно судить о его максимальной энергии поглощения. Понятно, что в электронные схемы предпочтительнее устанавливать варисторы, рассчитанные на большую энергию поглощения. Также рекомендуется устанавливать в схему по два одинаковых варистора, включенных параллельно.

Также существуют варисторы и для SMD монтажа. По внешнему виду они напоминают SMD диоды и поэтому их достаточно сложно отличить.

К варисторам отечественного производства относятся изделия марки СН2-1А, СН1-2-1, ВР-4В и др.

Конечно, у варисторов имеются недостатки, но они не столь значительны по сравнению с газоразрядными приборами. Прежде всего, варисторы обладают довольно большими шумами на низкой частоте, а также меняют свои параметры со временем и от воздействия температуры.

Стоит заметить, что среди защитных компонентов кроме варистора существует ещё один электронный компонент – супрессор . Это так называемый защитный диод или трансил. По своим функциям (но не устройству!) он чем-то похож на варистор, но обладает большим быстродействием и, как правило, используется в низковольтных цепях.

Кроме маломощных варисторов, которые применяются для защиты бытовой аппаратуры, промышленность выпускает очень мощные варисторы на большие напряжения и токи. Они используются на трансформаторных подстанциях и всегда включаются в системы грозозащиты.

При установке варисторов в самодельные конструкции следует иметь в виду, что иногда, при возникновении критических условий варисторы могут «взрываться» и чтобы предохранить монтаж и другие радиоэлектронные компоненты от последствий такого «взрыва» их стараются помещать в защитные экраны. Если сравнивать варисторы из карбида кремния и оксида цинка то, по мнению специалистов, вторые предпочтительнее.

Варистором называются полупроводниковые приборы, сопротивление которых резко уменьшается (на несколько порядков) при превышении приложенного к ним напряжения некоторого порогового значения. Данная особенность этих приборов обуславливает их применение в системах защиты электрических цепей от перенапряжения (путём подключения варистора параллельно защищаемой цепи). Вольтамперная характеристика варисторов симметрична, поэтому они ограничивают напряжение независимо от его полярности, в том числе могут работать в цепях переменного напряжения.

Как правило, они бывают металлооксидные или оксидноцинковые. Если посмотреть на вольт-амперные характеристики варистора, то можно отметить, что он имеет нелинейную симметричную форму, то есть может работать не только на постоянном, но и переменном напряжении. Такой элемент присоединяется параллельно нагрузке. Как работает варистор?

При повышении напряжения в сети ток проходит не через оборудование, а именно через варистор. Такое приспособление способно распределять энергию в виде тепла. Его главные особенности — это многократное использование и быстрое время восстановления, то есть его сопротивление имеет первоначальный показатель при снятии напряжения.

Какой имеет варистор принцип работы? Деталь ничем не отличается от обычного резистора, то есть при нормальном функционировании электроники он имеет омическое сопротивление. Итак, рассмотрим, какой имеет варистор принцип работы.

Показатель такого сопротивления довольно высок, и может составить 100000 Ом. При включении напряжения оно может уменьшиться, как только возникнет необходимость в защите уровня. Сопротивление падает от 100000 Ом до 100. Если значение упадет до низкого предела или будет равно нулю, то может возникнуть При который находится в электрической цепи перед варистором, выходит из строя. После этого электрическая цепь замыкается, и напряжение полностью отключается.

Как говорилось ранее, при отсутствии напряжения варистор может полностью восстановиться и работать в прежнем режиме. Для его функционирования требуется заменить Далее электронное устройство будет правильно функционировать. Варистор присоединяется параллельно источнику питания. Рассмотрим, какой имеет варистор принцип работы, на примере обычного персонального компьютера. Так как он имеет два вывода, то присоединение осуществляется параллельно фазы и нуля.

Как выглядит элемент?

Такое приспособление, как варистор, фото которого есть в нашей статье, напоминает обычный резистор, то есть имеет форму прямоугольника. Но все же имеет небольшое отличие.

Посреди него проходит диагональ, конец которой изогнут.

Как маркируется варистор?

На сегодняшний день можно встретить разные обозначения этих приборов. Каждый производитель вправе устанавливать ее самостоятельно. Маркировки различаются, потому что технические характеристики варисторов отличаются друг от друга. Примерами могут служить такие показатели, как допустимое напряжение или необходимый уровень тока.

В настоящее время каждый производитель устанавливает свою маркировку на эти типы приборов. Это объясняется тем, что производимые приборы имеют разные технические характеристики. Например, предельно допустимое напряжение или необходимый для функционирования уровень тока. Наиболее популярная маркировка - CNR, к которой прикрепляется такое обозначение, как 07D390K. Что же это значит? Итак, само обозначение CNR указывает на вид прибора. В этом случае варистор является металлооксидным.

Основные параметры варисторов

К таким параметрам относят:

  • норма напряжения;
  • максимально допустимый показатель переменного и постоянного тока;
  • пиковое поглощение энергии;
  • возможные погрешности;
  • время работы элемента.

Диагностика

Чтобы проверить данное электронное устройство, используют специальное оборудование, которое называется тестером. Итак, для проведения испытания понадобится варистор, принцип работы которого заключается в изменении параметров сопротивления, и тестирующее устройство. Перед его началом необходимо включить устройство и переключить в режим сопротивления. Только тогда аппарат будет отвечать всем необходимым техническим требованиям, и величина сопротивления будет огромной.

Перед началом проведения испытаний необходимо проверить техническое состояние прибора. В первую очередь следует посмотреть на его внешний вид. На приборе не должно быть трещин, а также признаков того, что он сгорел. Не стоит относиться к осмотру аппарата халатно, так как любая небольшая поломка может привести к возникновению неприятных обстоятельств.

Варисторы: применение

Такие приборы играют важную роль в жизни человека.

Из всего вышеперечисленного можно сказать, что варистор, принцип работы которого заключается в защите электроники от высокого напряжения в сети, помогает предотвратить поломку многих электрических приборов и сохранить проводку в целостности. Основным местом являются электрические цепи в различном оборудовании. Например, они встречаются в пусковых элементах освещения, которые еще называются балластами. Также устанавливаются в электрических схемах специальные варисторы, применение которых необходимо для стабилизации напряжения и тока.

Такие устройства используются еще в линиях электропередач. Но там они называются разрядниками, рабочее напряжение которых составляет более двадцати тысяч вольт.

Варисторы могут работать в большом диапазоне напряжения, который начинается с совсем маленького значения в 3 В, и заканчивается 200 В. Что касается силы тока элемента, то здесь диапазон составляет от 0,1 до 1 А. Такие показатели тока действительны только для низковольтного технического оборудования.

Положительные стороны варисторов

Данный вид аппаратов имеет множество положительных качеств, если сравнивать его с другими приборами, например, с разрядником. К таким важным преимуществам можно отнести:

  • высокая скорость работы элемента;
  • возможность отслеживания перепадов тока безинерционным методом;
  • возможность использования на уровне напряжения в пределах от 12 до 1800 В;
  • длительный срок эксплуатации;
  • относительно малая стоимость за счет простоты конструкции.

Отрицательные стороны

Вместе с таким большим количеством преимуществ перед другими приборами, есть также и существенные недостатки, среди которых можно выделить такие.

  1. Варисторы имеют огромной размер собственной емкости, что сказывается на работе электрической сети. Такой показатель может находиться в пределах от 80 до 3000 пФ. Он зависит от многих моментов: конструкция и вид варистора, а также максимальное значение уровня напряжения. Стоит отметить, что в некоторых случаях такой существенный недостаток может превратиться в главное достоинство. Но такое возможно довольно редко, например, если использовать варистор в фильтрах. В такой ситуации большая емкость будет служить в качестве в сети.
  2. По сравнению с разрядниками, варисторы не способны рассеивать мощность при максимальных показателях напряжения.

Чтобы увеличить показатель рассеянности необходимо увеличивать размер элементов, чем и занимаются многие производители.

Если появилась необходимость во включении варистора в электрическую сеть, необходимо помнить о таких важных моментах:

  • Всегда следует иметь в виду, что данный прибор не вечен, и наступят такие условия, которые приведут к его взрыву. Чтобы этого не произошло, необходимо использовать специальные защитные экраны, в которые можно поместить весь варистор.
  • Следует отметить, что кремневые технические приспособления существенно уступают по своим характеристикам оксидным аналогам. Поэтому лучше всего использовать именно этот вид варистора.

Заключение

Варистор играет важную роль в функционировании многих электрических цепей. Как говорилось ранее, такой вид полупроводниковых резисторов служит для уменьшения показателей сопротивления при увеличении напряжения или тока.

Благодаря такой возможности их устанавливают во многие электрические приборы. При скачках напряжения варистор, назначение которого направлено на изменение сопротивления, не дает ломаться приборам. Также он предотвращает перегоранию проводки. Таким образом, данные элементы обеспечивают надежную защиту при скачках в сети.

Варисторная защита, построенная на использовании полупроводниковых резисторов нелинейного типа, служит прекрасным средством для защиты от импульсных перенапряжений.

Варистор отличает резко-выраженная вольт-амперная характеристика нелинейного вида. Благодаря этому свойству с помощью варисторной защиты успешно решаются задачи по защите различных бытовых устройств и производственных объектов.

Принцип действия варистора

Варисторная защита подключается параллельно основному оборудованию, которое необходимо защитить. После возникновения импульса напряжения, благодаря наличию нелинейной характеристики, варистор шунтирует нагрузку и уменьшает величину сопротивления до нескольких долей Ома. Энергия, при перенапряжении, поглощается и рассеивается в виде тепла. Варистор как бы срезает импульс опасного перенапряжения, поэтому защищаемое устройство остается невредимым, что возможно даже с низким уровнем изоляции.

Рис. №1. Конструктивная схема варистора и его характеристика.

Условное обозначение варистора, например, СНI-1-1-1500. СН означает, нелинейное сопротивление, первая цифровое значение – материал, вторая – конструкцию (1- стержневой; 2 – дисковый), третья цифра – номер разработки, последняя цифра обозначает значение падения напряжения.

Таблица классификации варисторов

Конструктивные особенности варисторов

Наиболее технологически востребованные материалы для изготовления варистора оксид цинка или порошок карбида кремния, он позволяет успешно поглощать импульсы напряжения с высокоэнергетическими импульсами. Процесс изготовления строится на основе «керамической» технологии, которая заключается на запрессовке элементов с обжигом, установкой электродов, выводов и покрытие приборов электроизоляцией и влагозащитным слоем. Благодаря стандартной технологии варисторы можно делать по индивидуальному заказу.

Параметры варисторов

  1. Номинальное классификационное напряжение Uкл – считается постоянным показателем, при этом значении через прибор проходит расчетный ток.
  2. Максимально допустимое значение напряжения импульса, для варисторов стержневого типа входит в границы от 1,2 В до 2 В, для дисковых устройств в пределы от 3 до 4 В.
  3. Коэффициент нелинейности β – он показывает отношение сопротивления варистора к постоянному току к его сопротивлению переменному току.
  4. Быстродействие или время срабатывания, обозначает переход из высокоомного положения в низкоомное и может составить несколько нс, примерно, 25 нс.

Защита варисторами

Варисторы защитного типа, марок: ВР-2, ВР-2; СН2-1; СН2-2 рассчитаны на напряжение в границах от 68В до 1500 В, энергия рассеивания в диапазоне от 10 до 114 Дж, коэффициент нелинейности должен превышать значение 30.

Напряжение варисторов защитного класса удовлетворяет показателям максимально возможного пикового напряжения силовой связи, обязательно должно учитываться границы нестабильности напряжения до 10% и разброс величин классификационного напряжения в зависимости от технологических условий.

Uкл ≥ Uном * *1,1 * 1,1

Для сети U = 220В, Uкл ≥ 375 В.

Для трехфазной сети напряжением Uном = 380 В; Uкл ≥ 650 В

Сфера применения варисторов

Приборы используются в устройствах стабилизирующих высоковольтные источники напряжения в телевизорах, для обеспечения стабильного протекания токов в отклоняющих катушках кинескопов, они используются для размагничивания цветных кинескопов и в системах автоматического регулирования.

Варистор применяется в конструкции сетевого фильтра, он производит блокировку импульса перенапряжения и осуществляет защиту и по фазной, и по нулевой цепи.


Рис. №2. Сетевой фильтр с использованием варисторной защиты от импульсных перенапряжений, современная защита может погасить выброс энергии до 3400 Дж, это условие обеспечивает защиту от любых экстренных неожиданных ситуаций.

Большое распространение варисторы получили в конструкции мобильных телефонов для предохранения их от статичного электричества.

Автомобильная электроника и телекоммуникационные сети, еще одна распространенная сфера применения варисторов. Варисторы используются для люминесцентного освещения для защиты от перенапряжения ЭПРА.

Аналогом варисторной защиты служит молниезащита ОПН от перенапряжений и от гроз в высоковольтных цепях, на воздушных линиях и подстанциях.

Внутренняя электросеть в здании оборудуется шкафами от импульсных перенапряжений.

Рис. №3. ЩЗИП – щит от импульсного перенапряжения.

Конструктивная особенность защиты от перенапряжений в здании и размещения ее в щите. Это разнос шины заземления и фазного провода на большое расстояние друг от друга более 1 метра. Подборка элементов в шкафу и установка УЗИП требует внимательного расчета и выбирается в индивидуальном порядке для каждой определенной электроустановки.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.